Fuzzy Shannon Entropy: A Hybrid GIS-Based Landslide Susceptibility Mapping Method
نویسندگان
چکیده
Assessing Landslide Susceptibility Mapping (LSM) contributes to reducing the risk of living with landslides. Handling the vagueness associated with LSM is a challenging task. Here we show the application of hybrid GIS-based LSM. The hybrid approach embraces fuzzy membership functions (FMFs) in combination with Shannon entropy, a well-known information theory-based method. Nine landslide-related criteria, along with an inventory of landslides containing 108 recent and historic landslide points, are used to prepare a susceptibility map. A random split into training (≈70%) and testing (≈30%) samples are used for training and validation of the LSM model. The study area—Izeh—is located in the Khuzestan province of Iran, a highly susceptible landslide zone. The performance of the hybrid method is evaluated using receiver operating characteristics (ROC) curves in combination with area under the curve (AUC). The performance of the proposed hybrid method with AUC of 0.934 is superior to multi-criteria evaluation approaches using a subjective scheme in this research in comparison with a previous study using the same dataset through extended fuzzy multi-criteria evaluation with AUC value of 0.894, and was built on the basis of decision makers’ evaluation in the same study area.
منابع مشابه
A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping
Landslide susceptibility mapping (LSM) is making increasing use of GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. We have developed a new multi-criteria decision analysis (MCDA) method for LSM and applied it to the Izeh River basin in south-western Iran. Our method is based on fuzzy membership functions (FMFs) derived from GIS analysis. It makes use of n...
متن کاملLandslide hazard zonation using of model Shannon entropy(case study: Taleghan watershed)
Reviewing the damage caused by landslide proves the need to examine the factors influencing the occurrence of this phenomenon and the prediction of its occurrence. Therefore, the purpose of this study was to improve the prediction of landslide occurrence in the Taleghan watershed using Shannon Entropy Theory. Among the factors influencing the occurrence of landslide, ten factors of elevation, s...
متن کاملA Fuzzy Comprehensive Evaluation Method Based on AHP and Entropy for a Landslide Susceptibility Map
Landslides are a common type of natural disaster in mountainous areas. As a result of the comprehensive influences of geology, geomorphology and climatic conditions, the susceptibility to landslide hazards in mountainous areas shows obvious regionalism. The evaluation of regional landslide susceptibility can help reduce the risk to the lives of mountain residents. In this paper, the Shannon ent...
متن کاملA GIS-based comparative study of the analytic hierarchy process, bivariate statistics and frequency ratio methods for landslide susceptibility mapping in part of the Tehran metropolis, Iran
The high hillsides of the Tehran metropolis are prone to landslides due to the climatic conditions and the geological, geomorphologicalcharacteristics of the region. Therefore, it is vitally important that a landslide susceptibility map of the region be prepared. For thispurpose, thematic layers including landslide inventory, lithology, slope, aspect, curvature, distance to stream, distance to ...
متن کاملGIS Supported Landslide Susceptibility Modeling at Regional Scale: An Expert-Based Fuzzy Weighting Method
The main aim of this paper is landslide susceptibility assessment using fuzzy expert-based modeling. Factors that influence landslide occurrence, such as elevation, slope, aspect, lithology, land cover, precipitation and seismicity were considered. Expert-based fuzzy weighting (EFW) approach was used to combine these factors for landslide susceptibility mapping (Peloponnese, Greece). This metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 18 شماره
صفحات -
تاریخ انتشار 2016